Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Fangzhi Xuebao/Journal of Textile Research ; 44(1):56-63, 2023.
Article in Chinese | Scopus | ID: covidwho-2306591

ABSTRACT

Objective The epidemic of COVID-19 and its variants is endangering human health. Wearing protective masks can effectively reduce the infection risk by resisting the inhalation of the polluted air containing the coronavirus. Electrospun polyamide nanofibers can be used as the core layer of protective masks and have lately received growing attention because of their high filtration performance and robust mechanical properties. However, existing electrospun polyamide nanofiber filters are usually prepared from toxic solvents which could cause severe environmental pollution and endanger workers' health, hence, their practical application should be restricted. Therefore, it is imperative to seek and develop green-solvent-based polyamide nanofiber filters. Method Innovative polyamide nanofiber filters were developed by direct electrospinning technique based on green solvents (Fig. 1). Ethanol as the solvent and water as the nonsolvent were adopted to prepare the green-solvent-based polyamide (GSPA) nanofibers by designing spinning solutions with different ethanol/water mass ratios (i.e., 10: 0, 9: 1, 8: 2, 7: 3, and 6: 4) . During electrospinning process, the working voltage, tip-to-collector distance, and solution extrusion speed were set as 30 kV, 15 cm and 1 mL/h, respectively. The nanofibers prepared with the different ethanol/water ratios were denoted as GSPA - 0, GSPA - 1, GSPA - 2, GSPA-3, and GSPA-4, respectively. Results It was found that water content had a great influence on the morphological structures of polyamide nanofibers (Fig. 2) - After introducing a small amount of water, the obtained GSPA - 1 nanofibers featuring thinner diameter of 332 nm were compared to the GSPA-0 nanofibers (499 nm). The enhanced conductivity (10. 5 μS/cm) of waterborne spinning solutions (Fig. 3) stimulated more charges on spinning jets and led to larger electrostatic force, thus greatly elongating the jets and thinning the fiber diameter. However, with the further increment of water concentrations from 20% to 40%, the obtained fibers exhibited an increased average diameter ranging from 443 to 1 553 nm, which was mainly attributed to the larger viscosity of spinning solutions. Although water cannot dissolve polyamide, homogenous waterborne polyamide/ethanol solutions can still be obtained with different ethanol/water mass ratios within a broad area in the stable region (Fig. 3) - The average pore size of GSPA -1 membranes decreased by 55% compared with that of GSPA-0 membranes, contributing to high filtration efficiency. Moreover, with different concentrations (10%, 20%, 30%) of water, the fluffy structure of GSPA nanofibers were achieved with a high porosity (> 80%), which would offer more passageways to transmit air rapidly. As the water concentration increased, the breaking strength of membranes increased at first and then decreased (Fig. 5), and the GSPA- 1 membranes exhibited the highest breaking strength of 5. 6 MPa, which was believed to be related to the enhanced entanglements and contacts among the adjacent fibers because of the small fiber diameter. The GSPA -1 membranes displayed the highest filtration efficiency (99. 02%) for the most penetration particles (PM0.3) by virtue of the small fiber diameter but suffered from poor permeability with a pressure drop of 158 Pa. Moreover, the GSPA- 1 membranes possessed the highest quality factor of 0. 029 3 Pa, suggesting the optimal filtration performance among different GSPA membranes. A high PM0.3 removal efficiency (>95%) was achieved for GSPA-1 filters under various airflow velocities ranging from 10 to 90 L/min (Fig. 7). Compared with conventional melt-blown fibers, the GSPA nanofibers featured a smaller diameter and higher Knudsen number (Fig. 8), and PM0.3 were captured mainly on the surfaces of green polyamide nanofibers (Fig. 9), demonstrating the higher adsorption ability benefiting from the larger specific surface area. Conclusion A cleaner production of polyamide nanofibers for air filtration was proposed by direct electrospinning based on green and sustaina le binary solvents of water and ethanol. For the first time, the structure including fiber diameter, porosity, and pore size of electrospun polyamide nanofibers were precisely tailored by manipulating water concentration in spinning solutions. The prepared environmentally friendly polyamide nanofiber filters feature the interconnected porous structure with the nanoscale ID building blocks (332 nm), mean pore size (0.7 μm), and porosity (84%), thus achieving efficient PM0.3 capture performance with the filtration efficiency of 99. 02% and pressure drop of 158 Pa, which could be comparable to previous toxic-solvent-processed nanofibers. Moreover, the GSPA nanofibers exhibit robust mechanical properties with an impressive breaking strength (5 . 6 MPa) and elongation (163. 9%), contributing to withstanding the external forces and deformation in the practical assembly and usage of resultant filters. It is envisaged that the green-solvent-based polyamide nanofibers could be used as promising candidates for next-generation air filters, and the proposed waterborne spinning strategy can provide valuable insights for cleaner production of advanced polyamide textiles. © 2023 China Textile Engineering Society. All rights reserved.

2.
Materials Today Communications ; 34, 2023.
Article in English | Scopus | ID: covidwho-2245110

ABSTRACT

One–step preparation of electrospun bimodal fibrous membrane based on single nozzle is the key to the efficient fabrication of high–performance air filter. However, the preparation mechanism of electrospun bimodal fibers at low conductivity solution system is not clear, and there is a lack of evaluation methods for the quality of bimodal nanofibers, which limits the applicability of single nozzle electrospinning and the preparation efficiency of electrospun bimodal fibers. Here, three electrospinning processes at low conductivity solution systems of polyamide–6 (PA6), PA6 blended PVP (PA6/PVP), and PA6 blended polyethylene oxide (PA6/PEO) were studied according to the rheological properties and the fluid electrics (i.e., zeta potential), and the quality of the prepared bimodal fibrous membrane was creatively evaluated by R value. Inhomogeneous phase separations of the electrospinning jet along the direction parallel (x–axis) or perpendicular (y–axis) to the electric field were responsible for the formation of bimodal fibers. In addition, for the same solution system, the R value had a positive correlation with the air filtration performance. This work will greatly enhance the applicability of one–step single nozzle electrospinning for the preparation of bimodal nanofibers, improve the preparation efficiency, and promote the development of high–performance air filter. © 2022 Elsevier Ltd

3.
J Memb Sci ; 672: 121473, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2232719

ABSTRACT

The COVID-19 pandemic has caused serious social and public health problems. In the field of personal protection, the facial masks can prevent infectious respiratory diseases, safeguard human health, and promote public safety. Herein, we focused on preparing a core filter layer for masks using electrospun polyvinyl butyral/apocynum venetum extract nanofibrous membranes (PVB/AVE NMs), with durable interception efficiency and antibacterial properties. In the spinning solution, AVE acted as a salt to improve electrical conductivity, and achieve long-lasting interception efficiency with adjustable pore size. It also played the role of an antibacterial agent in PVB/AVE NMs to achieve win-win effects. The hydrophobicity of PVB-AVE-6% was 120.9° whereas its filterability reached 98.3% when the pressure drop resistance was 142 Pa. PVB-AVE-6% exhibited intriguing properties with great antibacterial rates of 99.38% and 98.96% against S. aureus and E. coli, respectively. After a prolonged usability test of 8 h, the filtration efficiency of the PVB/AVE masks remained stable at over 97.7%. Furthermore, the antibacterial rates of the PVB/AVE masks on S. aureus and E. coli were 96.87% and 96.20% respectively, after using for 2 d. These results indicate that PVB/AVE NMs improve the protective performance of ordinary disposable masks, which has certain application in air filtration.

4.
Journal of Industrial Textiles ; 52, 2022.
Article in English | Scopus | ID: covidwho-2195287

ABSTRACT

Particulate matter and spread of viruses, including COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are two of the most serious problems because of their significant threat to human health. Here, we fabricate ultrafine and bimodal structured polyamide-6 nanofiber/nets (PA-6 NFN) membrane via one-step electrospinning/netting. The PA-6 NFN membranes include ultrafine (∼70 nm) nanofibers and two-dimensional (2D) ultrathin (∼20 nm) nanonets. These membranes are optimized by facilely regulating the solution concentration, incomplete phase separation by adding NaCl, and also applying a high voltage of 22 kV. With integrated properties of small pore size, high porosity, high specific surface area of 108.8 m2/g, and robust tensile strength of 13.70 MPa, the resultant PA-6 NFN membranes exhibit high filtration efficiency of 99.11%, low pressure drop of 81 Pa, and higher quality factor compared to the two standard commercial masks which consist of three-ply surgical mask and respirator face mask. It can include bacteria, fungi, and also viruses including SARS-CoV-2 (with a diameter of about 100 nm). Additionally, after 24 h of operation of the filtration process in a simulated living environment, the obtained air filter still displayed a high filtration efficiency and a less variation pressure drop that shows the long-term performance of PA-6 NFN membranes. In addition, the R2 value was 0.99, which indicates that the calculation results are in good agreement with the measured results. The fabrication of PA-6 NFN membrane makes it a promising candidate for PM0.3 governance at applications including face mask, protective clothing, clean room, and engine intake. © The Author(s) 2022.

5.
Microbiol Spectr ; 10(5): e0055022, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2068501

ABSTRACT

Iodine-containing systems show broad antiseptic properties that can be an invaluable tool in controlling infections in humans and animals. Here, we describe the first proof-of-concept studies on biocidal active polyamide- and polyurethane-iodine complexes that are produced in situ directly during the fabrication and/or polymerization process at laboratory and commercially relevant scales. These polymer-iodine materials are active against a broad range of microorganisms, including bacteria and fungi. It is suggested that the ease of manufacture and subsequent commercialization make said systems especially suited for applications as base materials for medical devices to reduce infection risks and control the spread of pathogens. IMPORTANCE Infectious diseases are of mounting medical and public concern. A major contributor to this trend is the proliferation of medical implants, which are inherently vulnerable to microbial contamination and the subsequent onset of hospital-acquired infections. Moreover, implant-associated infections in humans are often difficult to diagnose and treat and are associated with substantial health care costs. Here, we present the development of biocidal active polyamide- and polyurethane-iodine complexes that are generated in situ during fabrication. We show that the excellent antiseptic properties of water-soluble povidone-iodine can be similarly realized in water-insoluble engineering plastics, specifically polyamide- and polyurethane-iodine. These complexes have inherent biocidal activity against major pathogenic bacteria and fungi.


Subject(s)
Anti-Infective Agents, Local , Iodine , Animals , Humans , Povidone-Iodine , Iodine/pharmacology , Polymers/pharmacology , Polyurethanes , Nylons , Bacteria , Water
6.
Polymers (Basel) ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1994128

ABSTRACT

The lack of resistance of plastic objects to various pathogens and their increasing activity in our daily life have made researchers develop polymeric materials with biocidal properties. Hence, this paper describes the thermoplastic composites of Polyamide 12 mixed with 1-5 wt % of the nanoparticles of zinc, copper, and titanium oxides prepared by a twin-screw extrusion process and injection moulding. A satisfactory biocidal activity of polyamide 12 nanocomposites was obtained thanks to homogenously dispersed metal oxides in the polymer matrix and the wettability of the metal oxides by PA12. At 4 wt % of the metal oxides, the contact angles were the lowest and it resulted in obtaining the highest reduction rate of the Escherichia coli (87%), Candida albicans (53%), and Herpes simplex 1 (90%). The interactions of the nanocomposites with the fibroblasts show early apoptosis (11.85-27.79%), late apoptosis (0.81-5.04%), and necrosis (0.18-0.31%), which confirms the lack of toxicity of used metal oxides. Moreover, the used oxides affect slightly the thermal and rheological properties of PA12, which was determined by oscillatory rheology, thermogravimetric analysis, and differential scanning calorimetry.

7.
Journal of Environmental Chemical Engineering ; 10(4), 2022.
Article in English | Scopus | ID: covidwho-1945561

ABSTRACT

Advancements in polymer science and engineering have helped the scientific community to shift its attention towards the use of environmentally benign materials for reducing the environmental impact of conventional synthetic plastics. Biopolymers are environmentally benign, chemically versatile, sustainable, biocompatible, biodegradable, inherently functional, and ecofriendly materials that exhibit tremendous potential for a wide range of applications including food, electronics, agriculture, textile, biomedical, and cosmetics. This review also inspires the researchers toward more consumption of biopolymer-based composite materials as an alternative to synthetic composite materials. Herein, an overview of the latest knowledge of different natural- and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented. The review discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects. This review also elucidates current challenges, future opportunities, and emerging applications of biopolymeric sustainable composites in numerous engineering fields. Finally, this review proposes biopolymeric sustainable materials as a propitious solution to the contemporary environmental crisis. © 2022 Elsevier Ltd.

8.
Int J Adv Manuf Technol ; 121(1-2): 785-803, 2022.
Article in English | MEDLINE | ID: covidwho-1858966

ABSTRACT

This study investigates the mechanical response of antibacterial PA12/TiO2 nanocomposite 3D printed specimens by varying the TiO2 loading in the filament, raster deposition angle, and nozzle temperature. The prediction of the antibacterial and mechanical performance of such nanocomposites is a challenging field, especially nowadays with the covid-19 pandemic dilemma. The experimental work in this study utilizes a fully factorial design approach to analyze the effect of three parameters on the mechanical response of 3D printed components. Therefore, all combinations of these three parameters were tested, resulting in twenty-seven independent experiments, in which each combination was repeated three times (a total of eighty-one experiments). The antibacterial performance of the fabricated PA12/TiO2 nanocomposite materials was confirmed, and regression and arithmetic artificial neural network (ANN) models were developed and validated for mechanical response prediction. The analysis of the results showed that an increase in the TiO2% loading decreased the mechanical responses but increased the antibacterial performance of the nanocomposites. In addition, higher nozzle temperatures and zero deposition angles optimize the mechanical performance of all TiO2% nanocomposites. Independent experiments evaluated the proposed models with mean absolute percentage errors (MAPE) similar to the ANN models. These findings and the interaction charts show a strong interaction between the studied parameters. Therefore, the authors propose the improvement of predictions by utilizing artificial neural network models and genetic algorithms as future work and the spreading of the experimental area with extra variable parameters and levels.

9.
Appl Mater Today ; 27: 101473, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1777973

ABSTRACT

The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 µm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.

10.
Chemical Fibers International ; 71(2):70, 2021.
Article in English | Scopus | ID: covidwho-1589465

ABSTRACT

The outlook for polyamide market demand, the stop-and-start nature of economic recovery during the COVID pan-1 demic, and key feedstock materials - both in abundance and in scarcity - were among the many topics discussed during the China International Polyamide & Intermediates Forum held in Shanghai on March 29-30, 2021. This article gives an overview about market developments for caprolactam and adiponitrile, the key intermediate chemicals for polyamide 6 and polyamide 66, respectively. © 2021 Deutscher Fachverlag GmbH. All rights reserved.

11.
IOP Conference Series. Earth and Environmental Science ; 930(1), 2021.
Article in English | ProQuest Central | ID: covidwho-1569510

ABSTRACT

During the COVID-19 pandemic, the increased use of plastic for personal protective equipment (PPE), single-use plastic bags, and food packaging raised significant environmental concerns. This study aimed to investigate the shape, abundance, and type of microplastics in the sediment of Jakarta Bay, specifically Tanjung Priok, Ancol Beach, and Sunda Kelapa Port. Sediment was collected using an Ekman sediment grab sampler and was extracted using the density separation method. The microplastics were counted and categorized according to the shape under a microscope. The differences in microplastic abundance in three different stations were determined using a one-way ANOVA. The polymer of microplastics was identified using Fourier Transform Infra-Red (FTIR). The results show that the abundance of the microplastics from coastal sediment was highest in the Sunda Kelapa Port (45066.67 ± 5205.13 particle/kg dry weight), which is significantly different (p<0.05) from Tanjung Priok (40533.33 ± 2444.04 particle/kg dry weight) and Ancol Beach (34666.67 ± 2444.04 particle/kg dry weight). Fragments dominated the shape of microplastic in Tanjung Priok, Ancol Beach, and Sunda Kelapa Post, comprising 36%, 40%, 38%, respectively, followed by fiber, film, and pellet. The FT-IR tests indicated that polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyamide are the most prevalent microplastic polymers.

12.
Polymers (Basel) ; 12(11)2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-926656

ABSTRACT

Different additive manufacturing technologies have proven effective and useful in remote medicine and emergency or disaster situations. The coronavirus disease 2019 (COVID-19) disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, has had a huge impact on our society, including in relation to the continuous supply of personal protective equipment (PPE). The aim of the study is to give a detailed overview of 3D-printed PPE devices and provide practical information regarding the manufacturing and further design process, as well as describing the potential risks of using them. Open-source models of a half-face mask, safety goggles, and a face-protecting shield are evaluated, considering production time, material usage, and cost. Estimations have been performed with fused filament fabrication (FFF) and selective laser sintering (SLS) technology, highlighting the material characteristics of polylactic acid (PLA), polyamide, and a two-compound silicone. Spectrophotometry measurements of transparent PMMA samples were performed to determine their functionality as goggles or face mask parts. All the tests were carried out before and after the tetra-acetyl-ethylene-diamine (TAED)-based disinfection process. The results show that the disinfection has no significant effect on the mechanical and structural stability of the used polymers; therefore, 3D-printed PPE is reusable. For each device, recommendations and possible means of development are explained. The files of the modified models are provided. SLS and FFF additive manufacturing technology can be useful tools in PPE development and small-series production, but open-source models must be used with special care.

SELECTION OF CITATIONS
SEARCH DETAIL